If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c^2=179
We move all terms to the left:
c^2-(179)=0
a = 1; b = 0; c = -179;
Δ = b2-4ac
Δ = 02-4·1·(-179)
Δ = 716
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{716}=\sqrt{4*179}=\sqrt{4}*\sqrt{179}=2\sqrt{179}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{179}}{2*1}=\frac{0-2\sqrt{179}}{2} =-\frac{2\sqrt{179}}{2} =-\sqrt{179} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{179}}{2*1}=\frac{0+2\sqrt{179}}{2} =\frac{2\sqrt{179}}{2} =\sqrt{179} $
| 3p+4=4p+9 | | 3x-8=16+5x= | | 2.5x+21=3.75+10 | | 7(c-1)+25=c-34 | | 5/16f+11/2=22/3 | | -9.4j+1.2=4.8j+6.5+7.41 | | 5x-9=-2(x-6) | | 2v+-3=5 | | 7c+32=c-34 | | 7(2x+4)=2(7x+3) | | 5x^2+7=23 | | 4p-p+9=9+3p | | 5-4t=-11 | | 9x-7=4x-8=180 | | -2d+4-10d=-10-10d | | 0.5(s-7)=13.5 | | 5=x-2/8+5x-1/4 | | -6s-4=-3s-4 | | 12(n+2)+4=4(3n+7 | | 3(2/3x+9)=-9 | | z–7=22 | | 3/2y-2=-7/3 | | 2/3s-4/3=+2/3 | | 6r+-42-3r=13r+-182 | | -4=-28+a/3 | | 3x+6=12 | | -7(2-2x)=84 | | -4u+1-8u=9-10u | | .5(4-12x)=8 | | -n-6n+4=5/ | | 1+2/4x=7 | | 14p+9=75 |